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Abstract—Using algebraic tools of supersymmetric quantum mechanics, we construct classes of conditionally
exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With
the aid of the raising and lowering operators of these harmonic oscillators and the SUSY operators, we construct
ladder operators for these new conditionally solvable systems. It is found that these ladder operators, together
with the Hamilton operator, form a nonlinear algebra, which is of the quadratic and cubic types for the SUSY
partners of the linear and radial harmonic oscillators, respectively.

1. INTRODUCTION, SUMMARY, AND OUTLOOK

Over the last decade, supersymmetric (SUSY)
quantum mechanics has become an important tool in
various branches of theoretical physics. By way of
example, we indicate that, in quantum mechanical
problems, SUSY has been found to be a very useful
algebraic tool [1]. In particular, the class of exactly
solvable quantum systems has been enlarged by such
methods [2]. Quite recently, these methods have even
been extended to constructing conditionally exactly
solvable problems [3], where, in addition, it has been
shown that these systems have a nonlinear algebraic
structure.

The objective of this study is to generalize the
approach given in [3] to a much wider class of condi-
tionally exactly solvable systems being the SUSY part-
ners of the linear or radial harmonic oscillator. In doing
this, we will first review the basic tools of SUSY quan-

“tum mechanics [1] that we are going to use. In Section
3, we will present in some detail the general construc-
tion principle that we proposed in [3]. In Section 4, we
present the results for a linear harmonic oscillator. Sec-
tion 5 and 6 contain our results on a radial harmonic
oscillator with unbroken and broken SUSY, respec-
tively.

In addition to constructing conditionally exactly
solvable problems, we also analyze their algebraic
structure, which proves to be uniquely characterized by
their SUSY partner—that is, we obtain a quadratic
algebra for the SUSY partners of a linear oscillator and
find a cubic algebra for a radial oscillator (with unbro-
ken as well as broken SUSY).

As becomes clear from our general method in Sec-
tion 3, the present approach can also be applied to other
shape-invariant SUSY systems such as the radial
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hydrogen atom and a Morse or a Péschl-Teller oscilla-
tor. Another application consists in constructing exactly
solvable drift potentials associated with the Fokker—
Planck equation. As matter of fact, this has already
been done for a harmonic oscillator by Hongler and
Zheng [4].

2. SUPERSYMMETRIC QUANTUM MECHANICS

Witten’s model of supersymmetric quantum
mechanics involves a pair of standard Schridinger
Hamiltonians

L d°
H, = —Z?"LV*(X) (1)

acting on the Hilbert space € of square-integrable
functions on the configuration space M, which we will
assume to be the real line in the case of the linear har-
monic oscillator, ¥ = L%(R), or the positive half-line in
the case of the radial harmonic oscillator, % = (y €
LXR*w(0) = 0}. The so-called SUSY partner poten-
tials

V) = (W00 £ W) @

are given by the SUSY potential W : M —~ R and by
its derivative W' = dW/dx. In terms of the SUSY opera-
tors

= %(di;*- W(x)), At = %(~%+ W(X)), 3)

the SUSY partner Hamiltonians are given by H, =
AA">20and H_=A'A>0.

With the aid of the operators in (3), it is easy to show
that H, and H_ are essentially isospectral. To be more
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explicit, we denote the eigenfunctions and eigenvalues
of H, by \;/f and Eff , respectively; that is,

Howi(x) = ExWo(x), n=0,1,2,.... (4

In the case of unbroken SUSY (here we will use the
convention [1] that the zero-energy eigenstate of the
SUSY system belongs to A_), the ground state of H_ is
characterized by the relations

E; =0, wi®) = Cexp{-[dxW(n}e ¥ (5)

with C being a proper normalization constant. The
remaining spectrum of H_ coincides with the complete
spectrum of H,, and the corresponding eigenfunctions
are related by the SUSY transformations

E;+ 1= E:>07
_ . -1/72 N
Wn + l(x) = (En) ATW“(X), (6)

-1/2
VX)) = (E L) Ay, (0.

In the case of broken SUSY, H, and H_ are strictly iso-
spectral, and the eigenfunctions are also related by the
SUSY transformations

E, = E. >0,
-1/2 "
vi(x) = (E) Ay, (7

. -2
Vu(x) = (E) Ay, (x).

Although the above relations (6) and (7) are valid in the
cases of continuous spectra as well, we consider here
only systems having a purely discrete spectrum.

From relations (5) and (6) or (7), it is obvious that,
knowing the spectral properties of, say, H,, we can
immediately obtain the complete spectral properties of
the SUSY partner Hamiltonian A_. It is the fact that is
our basis for constructing (conditionally) exactly solv-
able potentials, by which we mean that the eigenvalues
and eigenfunctions of the corresponding Schrodinger
Hamiltonian can be given in an explicit closed form
(under certain conditions imposed on the potential
parameters). Furthermore, the SUSY operators (3) also
allow us to construct, from known ladder operators of
H,, the corresponding ladder operators for H_, which
prove to close a nonlinear algebra.

3. CONSTRUCTING EXACTLY SOLVABLE
POTENTIALS

In this section, we present our basic idea underlying
the construction of (conditionally) exactly solvable
potentials. As was anticipated in the last section, the
basic idea consists in choosing the SUSY potential W
such that the partner potential V, becomes one of the
well-known exactly solvable ones—that is, the eigen-
value problem for the corresponding Hamiltonian H, is
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exactly solvable. In this way, we can eventually find
(through a proper choice of W) new partner potentials
that are also exactly solvable; that is, the spectral prop-
erties for H_ are obtainable via the SUSY transforma-
tions (6) or (7).

In order to find an appropriate class of SUSY poten-
tials, we employ the ansatz [1]

W(x) = @(x) + f(x), ®)

where @ is a so-called shape-invariant SUSY potential
[1]—that 1s, for f= 0, the corresponding partner poten-
tials V, belong to a known class of exactly solvable
ones. For a nonvanishing f, we have

Vi) = 5[0%0+ @ + £

+20(x) f(x) + fi(x)].

If we now choose f such that it obeys the generalized
Riccati equation

FA0 #2000 f(0) + f(x) = 2(e—1),  (10)

at least under certain conditions on the parameters con-
tained in @ and for certain values of € € R, the two
partner potentials are given by

®

V.(x) = %@2(x)+%<b’(x)+8—l, eE))

V (x) = %CDZ(x)—%(D'(x) -fi(x)+e- L. (12)

Clearly, the potential V, is, by construction, shape-
invariant and is therefore exactly solvable. Via the
SUSY transformation, we can also solve the eigenvalue
problem for H_ associated with the above potential V_,
which, in view of our assumption that the potential
parameters must take certain values, is sometimes
referred to as a conditionally exactly solvable potential
[5]. A first and obvious condition on the parameter € is
that it must be sufficiently large to give rise to a strictly
positive Hamiltonian H, > 0. If this were not the case,
the SUSY transformations would lead to “wave func-
tions” that do not belong to the Hilbert space #. This,
for example, may happen if the solution f to (10) con-
tains a singularity in the configuration space M. Note
that the SUSY operators (3) are given by

A= ]%(dix”)(x) + f(x)),

A" = -J—i(—-%+(b(x)+f(x))

and that they must leave the Hilbert space invariant: A:

H— AT H — XK.

To find such regular solutions to equation (10), we
linearize it by setting f(x) = u'(x)/u(x), which leads to an

(13)
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ordinary, homogeneous, and linear second-order differ-
ential equation

u'(x) + 20(x)u'(x) + 2(1 - )u(x) = 0. (14)
In terms of u, the conditionally exactly solvable poten-
tial then has the form

V.(x) = %(Dz(x)—%d)'(x) .

u'(x) u'(x)
+;(75(2(D(X)+m)—€+ 1.

Ensuring the regularity of f now amounts to obtaining
the most general solutions to equation (14) that are
(without loss of generality) strictly positive on M. This
is equivalent to requiring that V_ not have any addi-
tional singularities apart from that of V,. The latter may
only exist at x = O for the case of M = R*.

In the following, we will consider three examples
corresponding to a linear harmonic oscillator with
unbroken SUSY and a radial harmonic oscillator both
with unbroken and with broken SUSY. For these sys-
tems, we also know how to construct ladder operators,
which close a linear algebra. With the aid of the SUSY
operators (13), we are then able to obtain ladder opera-
tors for the conditionally exactly solvable system H_,
which prove to close a nonlinear algebra.

4, LINEAR HARMONIC OSCILLATOR

As a first example, we consider the SUSY potential

of a linear harmonic oscillator on the real line M = R:
d(x) = x. (16)

It is straightforward to verify that, in this case, the

potential (11) is indeed that of a linear harmonic oscil-
lator,

1 2 1
V.(ix) = ix +e—§, an
whose energy eigenvalues and eigenfunctions are
E, = n+e,
(18)

Vi = W2 HWexp{-/2},

where H, stands for Hermite polynomials of orders n =
0, 1,2, ....Since a strictly positive spectrum is required
for H,, we arrive at a first condition on the parameter €:
£ >0,

Let us now consider a solution to (14) with the linear
SUSY potential (16). Upon the substitution z = —x?, this
differential equation transforms into that for the conflu-
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ent hypergeometric function; therefore, the most gen-
eral solution has the form

l1-¢1 2-¢3
u(x) = OLIF,(——z—, 5, —x2)+BxlFl("2—, 5,— 2)

2
=e” I:ochl(%, %, xz) + Bx|Fl(l¥, %, xz)}

o, B < R being two additional parameters of the system.
Since we seek strictly positive solutions, the real
parameter 0. must not vanish; hence, it can be set to
unity without loss of generality. In addition, the real

parameter [ must obey the inequality [B] <
ZF(L;—E)/F(%), which follows from the positivity

condition u > 0 via the asymptotic form

e-1| [(1/2) BF(3/2)
I'(e/2) F(1_+g
2

u(x) = [1+0(1/x)].(20)

Note that, for B = 0, the positivity requirement on u
leads to € > 0, a condition that has already been
obtained above from the positivity of H,. Under these
conditions, the potential (15) is given by

69),

rE 2n

IR
V_(x)~2x E+2+u(x)(2x

which is now a conditionally exactly solvable potential.
A plot of this potential for 0 < € <3 and = 0 is dis-
played in Fig. 1. For small € and 3 = 0, the potential V_
exhibits two deep and one shallow minimum located at
the origin. In fact, the parameter € is the tunneling split-
ting due to the tunnel effect between two deep minima.
For large values of €, the shallow minimum at the center
x =0 becomes deeper, and the other two minima, which
are located symmetrically about the origin, disappear.
For nonvanishing B, the basic structure of V_ is the
same, but, now, it is no longer symmetric with respect
tox=0.

For the above potential (21), the ground-state
energy eigenvalue and eigenfunction of H_ are given by

E =0, Wi = Cepl-/2) ()

(x)

Note that, because of (20), the above ground-state wave
function is square-integrable; therefore, SUSY is
unbroken. The remaining spectral properties of H_ fol-
Vol. 61
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Fig. 1. Family of SUSY partner potentials that is given by (21) and which corresponds to the linear-harmonic-oscillator potential

(17). Here, we show only the symmetric case of § = 0.

low from those of H, via the SUSY transformation (6):

E,.. = n+g,

- exp{—x2/2}
Vs (x) =
LR e (23)
u'(x)
X (H,,+ () + H"(x)u_(xj)'

It is worth noting that, for B = 0 and for an odd integer
€ = 2N + 1 > 0, the solution given by (19) becomes a
polynomial in x? of degree N with no real zeros—that
is, u(x) = (1 + gix®...(1 + gwx?) with g; > 0. These
cases—in particular, those for N = 1 and 2—have been
discussed in [3] (see, however, also [6] for a different
approach to such cases and for their connection to non-
linear superalgebras).

Let us now construct ladder operators for H_. In
doing this, we first recall the well-known ladder opera-
tors for a linear harmonic oscillator specified by H,. We
have

a= %2(%+x), a = :}5(—%‘”6). (24)
These operators obey the linear algebra
[H,,a] = —a, [H, a']=ad, [a,d']=1 (25
and act on the eigenstates of H, as follows:

ayi(x) = Jnyi_ (0,

. . (26)
aT\J,!,,(x) = Jn+ 1Wn+l(x)-
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With the aid of the SUSY operators (13), we can now
construct similar ladder operators [3] for the SUSY
partner H_:

B = AtaA, B' = A'a’A. (27)

Obviously, these operators act as lowering and raising
operators:

Bw;+l(x) = E;—lnE;HW;(x)’
B, () = JEL, (n+ DE,, ;o).

However, the ground state remains isolated; that is,

(28)

By (x) =0 = Bty (x). By using these relations, we can
easily verify that, together with the Hamiltonian H_, the
ladder operators B and BT close the nonlinear algebra

[H,B] =-B, [H,B'] =B,

(29)
[B,B'] = 3H* - (2e-1)H_,

which is of the quadratic type. Owing to unbroken

SUSY, which implies that H_y (x) = 0, this algebra is
defined on the full Hilbert space ¥ = L%(R).

5. RADIAL HARMONIC OSCILLATOR
WITH UNBROKEN SUSY

As a second example, we consider the SUSY potential

O(x) = x

—1:—1, v20, (30)
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Fig. 2. Family of SUSY partner potentials (35) corresponding to the radial-harmonic-oscillator class (31). Here, we show only the
cases of B =0 and y= 1. Because of condition (34), the allowed ranges of € are 0 < € < 2 and 4 < € < o, For the forbidden regions,

the figure clearly displays singularities in V_.
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Fig. 3. Family of SUSY partner potentials (47) corresponding to the radial-harmonic-oscillator class (44) with broken SUSY. Here,
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we show only the case of Y= 1. The allowed range of e is -4 < €.
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which in turn gives rise to the radial-harmonic-oscilla-
tor potential

AZINCEE PR

Vix) = Y-5 (3D

x

The energy eigenvalues and eigenfunctions of the cor-
responding Hamiltonian H, are

E, =2n+1+¢g,

2 +2 3 2> (32)
Y LY+ / (x2)e—x /2

’

v = (e s3]

where L, stands for a Laguerre polynomial of degree n

[7]. The positivity of H, leads to the first restriction:
e>-1.

Let us now consider positive solutions to equation
(14). We have

] 1
u(x) = 1F1('—2‘§,—Y”§, _xz)
(33)

4 Bx2“3,F,(2+y—§, % +7, -xz),

where we have already set o = 1 without loss of gener-
ality. The positivity of the above solution amounts to
imposing the following conditions on the parameters J,

Y, and €:
1
r(-v-3)

T(e/2-vy-1)

r-d) (39

Te/2-y-DIG/2+y)

0<
(34)

IBl <

The corresponding partner potential has the form

2
(y+1)
Vi) =241
2 2x2

u'(x) Y+1  u(x)
gl SR
3 ()( T +u<x>)

By virtue of the above conditions, it is now also a con-
ditionally exactly solvable potential. Figure 2 shows
this potential for =0, y=1, and -1 < € < 8. Note that,
for £ <0 and 2 < € < 4, the potential (35) exhibits sin-
gularities, as might have been expected, because these
values of € are not allowed for ¥ = 1. Since SUSY
remains unbroken for all the allowed values of the
parameters, the ground-state energy of the SUSY part-
ner Hamiltonian H_ vanishes, and the corresponding
eigenstate is obtained from (5). The remaining spectral

(35)
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properties of H_ are found via the SUSY transforma-
tions (6):

Eg =0, yyx) = %xYW“le—x/z’

E,.i=2n+1+¢g,

- 9 = 1 (36)
el Jan +2 +2¢
d Y+ u'(x)
x(“ﬂ”’"x_ u(x))w"( )-

To construct the ladder operators for H_, we recall the
corresponding operators for a radial harmonic oscilla-
tor [7], which in essence are built from those given
in (24): .

- az_(y+ 1)(y+2)

¢ 2

2x
(37

o = @y QDI+
2x°
These operators act on the eigenstates of H, as
ey, (x) = =2Jn(n+7v+3/2)y,_ (%),

v v Voo (38)

cyn(n) = 2J(n+ D(n+y +5/2Dw,, (%),

and, as in the preceding example, close a linear Lie
algebra:

H,c] =-2¢c, [H,c']=2c,
[H, (H, (39)
le,c’] = 4(H, +y-€+3/2).

Furthermore, they also allow us to construct ladder
operators for the quantum system characterized by H_:

D = A'cA, D' = A'c'A. (40)

These operators act on the eigenstates of H_ in the fol-
lowing way:

DV, (x) = =2JE;_n(n+Y+3/DE, , W),
Dy, (%)
= —2JE, \(n+ D(n+Y+5/DE, Wy 2(0),
Dyi(x) = 0 = D'y

(41)

The last line shows that the ground state is again iso-
lated, which follows from the fact that SUSY is unbro-
ken. With the aid of the above relations, we can verify
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that these operators, together with the Hamiltonian,
close the nonlinear algebra

[H,D] = -2D, [H,D']= 2D,
[D,D'] = 8H> +12(y—€ + 3/2)H*

—4(257—:—:2 +3e-1)H_,
which is of the cubic type.

(42)

6. RADIAL HARMONIC OSCILLATOR WITH
BROKEN SUSY

So far, we have considered only examples with
unbroken SUSY. However, a radial harmonic oscillator
also admits a broken SUSY, in which case the second
term in (30) is opposite in sign. Hence, we consider the
SUSY potential [1]

d(x) = x+y+1,
x

Y20, 43)

which yields the radial-harmonic-oscillator potential

+(x) Y + (44)

2

and the following spectral properties of the correspond-
ing Hamiltonian H,:

Y(Y+ )+e+y+1
2x°

E, =2n+2y+2+¢,

172 (45)
! + -
2n! :| o lLZ 1/2(x2)e 2

v = [ty

Clearly, we have the condition —2 — 2y < €. This condi-
tion is identical to that obtained from the positivity of
the following solution to (14):

u(x)—,F(2 ,y+2 )

Note that the second linearly independent solution to
equation (14) is not allowed (B = 0) in order for SUSY
to remain broken. The corresponding partner potential
has the form

(46)

y L IXT+2)

Vix) = +vY-¢€
2x° a7
u'(x) Y+ 1 LU (x)
2 p
i )(2 2 u(x>)

and the spectral properties of the associated Hamilto-
nian H_ are immediately obtained from (7):

E, =2n+2y+2+E,
1

Valo) = Jan+4y+4 +2¢ (48)
d Y+ 1 u(x)
x(—a*' +— X ( ))Wn( )
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Figure 3 shows the potential (47) for y=1and-5<e<2.

As before, we can introduce the ladder operators
D = A'cA and D' = A'cA, which obey the nonlinear

algebra
[H_, D] = -2D, [H_D'] = 2D,
[D,D] = 8H -~ 12(y +e+ 1/2)H’ (49)

+4Qey+e’+e+ DA
This algebra can also be obtained from the unbroken
SUSY case (42) by replacing y by —y — 2. In contrast to
the case of unbroken SUSY, however, the ladder opera-

tors act here on all eigenstates of H_. In other words, the
ground state is not isolated. In fact, we have the relation

n

v = (-3 o

x[n!(y+ g) (y +1+ ) (y+ 2+ 2),.] (DY "wiy(x),

where the ground-state wave function is

' lexp{-x*/2}

Yo(x) = -
/(27+£+2)F(y+§) 51)
IR iC)

x(2x—y 1+ P +u(x))'

A discussion for the special case of € = 3 and arbitrary
Y is given in [3].
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